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Self-diffusion in dense granular shear flows

Brian Utter* and R. P. Behringer
Department of Physics and Center for Nonlinear and Complex Systems, Box 90305, Duke University,

Durham, North Carolina 27708, USA
~Received 22 August 2003; published 31 March 2004!

Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are
the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of
granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-

dimensional Couette geometry. We find that self-diffusivitiesD are proportional to the local shear rateġ with
diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular

direction. The magnitude of the diffusivity isD'ġa2, wherea is the particle radius. However, the gradient in
shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements
that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the
mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to
the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that
is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is
suppressed along the direction of the strong force network. A simple random walk simulation reproduces the
key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean
velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the
simulation since the strong force network is not included. Examples of correlated motion, such as transient
vortices, and Le´vy flights are also observed. Although correlated motion creates velocity fields which are
qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the
system appears simply diffusive.

DOI: 10.1103/PhysRevE.69.031308 PACS number~s!: 45.70.Mg, 45.05.1x, 45.70.2n
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I. INTRODUCTION

A. Overview

Despite the prevalence of granular materials in nature
industry, a coherent understanding of granular flows is s
lacking. Particularly in dense systems, features such as
ming, shear bands, and the coexistence of solidlike and
uidlike regions make it difficult to offer a simple theoretic
description. Fluctuations in both the force network and p
ticle velocities can be of the same magnitude as the m
values and are known to be important aspects of the mi
scopic behavior of dense granular flows@1#. Due to the com-
plexity of these systems, one of the key goals of curr
research is to develop a statistical description of steady s
behavior, such as a thermodynamic or hydrodynamic mo
Fundamental to statistical approaches is understanding
mean fluctuating part of particle motion, which is describ
by a granular diffusivity.

Sheared granular systems have received considerabl
tention recently@1–3# as an important example of granul
flow. Diffusion, in particular, has been studied in a variety
granular systems, such as vibrated grains@4,5#, tumblers
@6,7#, chute flows@8–10#, and sheared systems@11–19#, but
these studies have predominantly focused on rapid flow
gimes. Understanding slow, high density, flow is not triv
@18#; there is no replacement at the fundamental level
collisionally based kinetic theories that are expected to ap
only in the dilute rapid flow regime.

*Electronic address: utter@phy.duke.edu
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In this paper, we characterize the self-diffusivity of grai
in a two-dimensional~2D! Couette shearing experiment b
studying individual particle trajectories over time. In contra
to most previous results, we focus on quasistatic dense flo
In this regime, since particles are constantly in contact w
their neighbors, interactions are not collisional and mate
flow is largely confined to a shear band with a nominal thic
ness on the order of 5 particle diameters.

Several observations from the present experiments
noteworthy:~1! We find that particle diffusivity is propor-
tional to the local shear rate, with diffusivities approximate
twice as large along the mean flow direction as the perp
dicular direction.~2! We show that unlike rapid flows, the
anisotropic force network induces a substantial anisotrop
the diffusivity. This is in addition to the usual anisotrop
induced by the direction of mean flow.~3! Care must be
taken when calculating diffusivities in a shear gradient@20#,
as motion can appear to be subdiffusive or superdiffusive
to a gradient in the shear rate or Taylor dispersion@21#. We
show through a simple Fokker-Planck model that appar
subdiffusive or superdiffusive behavior can be attributed
shear gradient and boundary effects.~4! Hence, the grain
motion is statistically consistent with a simple random wa
in the presence of shear gradients.~5! Nevertheless, at large
spatial scales, we occasionally observe correlated motion
Lévy flights. But these events are rare and do not hav
significant impact in the mean.

B. Models for granular diffusion

In the kinetic theory approach, a granular temperature
often defined asT}^(v2 v̄)2&, with instantaneous particle
©2004 The American Physical Society08-1
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B. UTTER AND R. P. BEHRINGER PHYSICAL REVIEW E69, 031308 ~2004!
velocity v and mean velocityv̄, in which the velocity fluc-
tuations contribute to a temperature in analogy with mole
lar gases.

A different approach was recently proposed by Makse
Kurchan, who applied uniform shear in a numerical expe
ment and measured diffusivityD and mobilityx to define a
temperatureD/x by analogy with fluid systems@14#. In their
model, they report that the 0th law~thermal equilibration! is
satisfied in a bidisperse mixture, supporting the thermo
namic picture. This is in contrast to experimental measu
ments of kinetic granular temperature which find a lack
equipartition when different types of particles are pres
@22,23#.

Isotropic Brownian diffusion in an unbounded system
often characterized by the time evolution of the second m
ments of a probability distribution function~PDF!. For ex-
ample,

^x2&52Dt, ~1!

wherex is the particle position relative to its initial positio
(v[Dx/Dt for a small time stepDt), D is the diffusivity,
and t is time.

More generally, diffusion must be described by a tens
For instance, diffusivities along the flow direction in granu
gases are in general different from transverse diffusivi
@12,17,18#.

Diffusion in even a simple shear flow is complicated
Taylor dispersion effects@21#, in which diffusive motion
couples to the mean flow leading to larger dispersion al
the flow direction, as recently elucidated in systems of n
colloidal particles@20#. In this case,̂x2& is nonlinear in time,
i.e., it contains higher order corrections due to the coupl
of the shear to the diffusive motion. Simply subtracting t
mean flow from particle trajectories and computing diffusi
ties does not give accurate results in this system@20#.

In particular, for flow of the formvW 5ġyx̂, i.e., uniform
unbounded shear flow in two dimensions in which there i
constant shear rateġ creating a velocity gradient in they
direction, the second-order moments are given by R
@20,24#:

^yy&52Dyyt, ~2!

^xy&52Dxyt1Dyyġt2, ~3!

^xx&52Dxxt12Dxyġt21
2

3
Dyyġ

2t3. ~4!

These equations describe an ensemble average of pa
positions@x(t),y(t)# relative to the particle’s initial location
@i.e., @~x~0!,y~0!#5~0,0!#, without subtracting the mean flow

These relations follow naturally for a PDF described
Brownian anisotropic diffusion with mean local flowvW as
above, and a diffusion tensorD, with elementsDxx , Dyy ,
andDxy5Dyx , where

]P/]t5vW •“P1“•D“P. ~5!
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Here,x corresponds to the streamwise direction andy is
perpendicular tox. The left-hand sides of Eqs.~2!–~4! cor-
respond to they2, xy, and x2 moments of the probability
densityP.

The higher order terms in Eq.~4! are due to Taylor dis-
persion. For instance, thet3 term arises because diffusiv
motion along6 ŷ moves grains to regions of different mea
velocity v(y) x̂ which tends to increase their separation
dispersion along thex̂ direction. These higher order term
contribute to mean squared displacements which there
appear superdiffusive.

It must be emphasized that Eqs.~2!–~4! are derived as-
suming that the diffusivities and shear rate are constan
space and time over an infinite plane. This condition is
met in the current experiment which changes the spec
form of the correction terms.

Several issues concerning a diffusive picture must be
dressed for sheared dense granular materials to deter
whether Brownian diffusion applies. Two of these issues
the presence of a shear band and the limiting boundary a
shearing surface. Even assuming that a diffusive descrip
is applicable, it remains to be determined on what tempo
or spatial scales such a description should apply. In de
quasistatic flows, grains are generally close to a jammed s
in which particles are in constant contact. Motion of grai
requires the creation of voids, so correlated motion might
expected to be particularly important in dense 2D syste
where paths are constrained. Short-lived vortex structu
have been seen in 2D granular simulations@15# and experi-
ments on 2D shearing of foams@25#. These are potentia
deviations from Brownian diffusive behavior which migh
affect the time evolution of the moments.

C. Previous measurements and simulations

The full diffusion tensor has been measured in granu
gases using kinetic theory@17#, simulations of rapid granula
shear@18#, and shearing of noncolloidal suspensions@26#.

Substantial work on granular diffusivity in rapid flows ha
been done by Hsiau and co-workers who have measured
diffusion coefficients in a variety of granular systems@11–
13,27#. They find that fluctuations are anisotropic, with th
largest fluctuations along the flow. Diffusivities are found
increase with shear rate and depend on the square root o
granular temperatureT in agreement with kinetic gas theory
Other results in a similar chute flow were subsequently p
sented by Natarayanet al. @10#.

Losert et al. studied a 3D fluidized Couette experime
@3#, in which velocity fluctuations were found to be slight
larger in the direction along the mean flow. These fluctu
tions decrease roughly exponentially far from the inner c
inder, but decrease more slowly than the average velocit

Radjai and Roux studied particle velocity fluctuations
numerical simulations under homogeneous strain in wh
there was no shear band formation@15#. They measured
anomalous diffusion with an exponent of 0.9~rather than 0.5
for ordinary diffusion! which they attributed to long-time
configurational memory of a granular medium in quasista
flows.
8-2
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SELF-DIFFUSION IN DENSE GRANULAR SHEAR FLOWS PHYSICAL REVIEW E69, 031308 ~2004!
Diffusivities have also been measured in a 3D rotat
tumbler@6,7#, 2D swirling flow @28#, chute flow@9#, simula-
tions of shaken spheres@4#, and simulations of small num
bers of spheres in suspension@29#. Earlier studies primarily
addressed rapid flows from kinetic theory@16#.

Although these studies are relevant here, we note tha
displacements were assumed to be purely induced by
shear flow and no attempt was made to investigate the ro
the force chain network.

D. Organization of presentation

The paper is organized as follows. In Sec. II, we descr
the experimental techniques. We present diffusion meas
ments in Sec. III and results from a random walk simulat
in Sec. IV. We show the impact of the anisotropic force n
work in Sec. V. We discuss diffusivities determined from t
velocity autocorrelation functions in Sec. VI. In Sec. VII, w
show examples of intermittent vortices and Le´vy flight tra-
jectories, and in Sec. VIII, we draw conclusions.

II. EXPERIMENTAL TECHNIQUES

The experiment is performed with a 2D Couette appa
tus, as sketched in a top view in Fig. 1. The granular mate
~B! consists of a bidisperse mixture of about 40 0
disks ~diameters dS50.42 cm, dL50.50 cm, thickness
50.32 cm) in a ratio of 3 small:1 large. The bidisperse m
ture is used to inhibit crystalline ordering of the disks. T
disks lie flat on a Plexiglas sheet bounded by an outer
(Ro[51 cm) ~C! and an inner shearing wheel (Ri
[20.5 cm) ~A!. A Plexiglas sheet covers the experiment
protect the experiment from external perturbations, but
sheet does not contact the particles. The shearing whe
rotated at a frequencyf of 0.1–10.0 mHz or a speed ofv
'0.013–1.3 cm/s at the shearing surface. The experime
initially run for at least one revolution of the shearing whe
in order to avoid effects from transients, an issue that will
addressed in another paper@30#. The shearing wheel and th
outer ring have teeth with gaps comparable to the size of
smaller particles.

The system is lit from below and observed from abo

FIG. 1. Schematic of experiment as viewed from above. T
granular material~b! is contained by the shearing wheel~a! and the
outer ring~c!. Their radii areRi520.5 cm andRo551 cm, respec-
tively. On the right is a section of an experimental image of
grains.
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using a 2 megapixel charge-coupled device~CCD! camera at
a frame rate of up to 7.5 Hz. Sequences of approxima
1500 images are analyzed to determine particle trajecto
Disks within about 20 particles diameters of the shear
wheel are marked with lines, thus allowing us to track p
ticle position and orientation and to identify particles by siz
Approximately 4000 grains are typically in the field of view
of which 2500 are marked. Images are thresholded and
orientation and position of lines on the disks are found. S
ficient temporal resolution is used such that each particle
frame can be connected with the closest grain in the su
quent frame to establish particle trajectories.

The force network can also be visualized since the gra
are made of a photoelastic material@31#. When polarized
light travels through the disks, it experiences a phase s
~birefringence! proportional to the difference in principle
stressess22s1. When the disks are illuminated betwee
crossed polarizers, grains under larger stress are seen a
gions of larger gradients in light intensity. In this way, th
force network is visualized as a network of bright lines on
dark background. Additional details were presented by Ho
ell et al. @1#. The polarizers are removed for measuring p
ticle trajectories and diffusivities.

III. DIFFUSION MEASUREMENTS

A. Mean velocity profiles

We first consider the mean properties of the flow. In F
2, we show the mean tangential velocityvu versus radial
distance from the shearing surface,r[R2Ri , whereR is the
distance from the center of the shearing wheel. The veloci
are scaled by the velocity of the shearing surfaceV0
50.28d/s whered is the mean particle diameter@d5(dS
1dL)/2#. For this particular run, we used a frame rate
1.08 Hz, so that the shearing wheel was displaced 0.d
between each of the 1080 images, which, in total, corresp
to one revolution of the shearing wheel. The limiting val
for vu of approximately 1024 corresponds to the sensitivit
of the measurement for a typical number of images and s
tial resolution, e.g., for an image resolution of 20 pixels p
diameter, a grain displacement of 1 pixel over the entire
would give a mean velocityv̄u5 1

1080(d/20)1.08 Hz55
31025(d/s) ~or v/V0'1024) and velocities smaller than
this cannot be resolved. Motivated by previous results
Couette shear@2,32#, we fit the data (r ,7.5d) to an expo-
nential @vu(r )51.071 exp(20.521r )# and to a Gaussian
@vu(r )50.925 exp(20.284r 20.0534r 2)#.

From this individual run, the Gaussian fit seems most
propriate. However, this is an artifact of the data resoluti
Additional data with slower frame rates point to an importa
issue concerning particle tracking velocimetry. If the numb
of imagesN remains fixed, by taking data using slower fram
rates, velocities of slower particles further from the shear
surface can be accurately measured while faster particle
the shearing surface can no longer be accurately tracked
show these results in Fig. 3 in which the frame rat
([1/Dt) is varied for different runs at the same impos
shear rate (f 51 mHz, N51500). The individual curves are

e
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B. UTTER AND R. P. BEHRINGER PHYSICAL REVIEW E69, 031308 ~2004!
accurate over a particular range of velocities based on
frame rate and number of pictures in the run. In Fig. 3~b!, we
show data for each set within this range. It becomes evid
that the velocity profile has an exponential tail which is o
scured when simply analyzing a single run. Previous res
have shown exponential@1,19#, Gaussian@2#, and similar
strongly decaying@3# velocity profiles for Couette flow. Au-
thors of these studies@1,2# have suggested that the diffe
ences in measured profiles may depend on whether the
is 2D or 3D or on whether the particles are rough or smoo
The present data suggest that an additional factor may
spatiotemporal resolution. Particle tracking issues in part
lar have been addressed recently by Xuet al. @33#.

We conclude that correct tracking occurs for velocit
that approximately satisfy

1

N

1

20

d

Dt
& v̄u&0.1

d

Dt
, ~6!

FIG. 2. Mean tangential velocity vs radial distance from t
shearing surface plotted on a~a! linear and~b! logarithmic scale for
a particular run. The velocityv is scaled by the velocity of the
shearing surfaceV0. The experimental data (n,r ,7.5d) is fitted
to an exponential~dashed line! and a Gaussian~solid line!.
f 51 mHz andV050.28d/s.
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whereN represents number of pictures, and the image re
lution is 20 pixels per diameterd. The lower speed limit is
set by image and temporal resolution. The upper limit
chosen to resolve the occasionally fast displacements
above the mean. Note, however, that the upper cutoff is
an issue when the speed of the shearing surface is less
d/Dt, since generally, all particle displacements can be
solved, e.g., forDt50.3 s and 0.925 s, the requirement th

v̄u,0.1(d/Dt) is not necessary.

B. Radial and tangential diffusivities, Drr and Duu

We measure diffusivities by tracking individual particle
and hence their displacements, over time in both the ra
( r̂ ) and tangential (û) directions. We subtract the mean flo
~Fig. 2! from the tangential velocity component at each tim
step.

Although Eqs.~2!–~4! characterize absolutex and y dis-
placements without subtracting the mean flow, they are a
predicated on a velocity profile such that^x(t)&5^y(t)&

FIG. 3. ~a! Tangential velocity vs radial distance from the she
ing surface using experimental runs at different frame ra
([@1/Dt#) as described in text. Velocitiesv are shown relative to
the velocity of the shearing surfaceV050.28d/s. ~b! Data is shown
where velocities can be resolved given the frame rate and num
of pictures. An exponential tail is observed in whichvu}e21.25r .
8-4
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SELF-DIFFUSION IN DENSE GRANULAR SHEAR FLOWS PHYSICAL REVIEW E69, 031308 ~2004!
50 which is true for a uniform shear rate in an infinite d
main, neither of which are true here. The exponential vel
ity profile observed in the experiment invalidates this a
prevents us from directly comparing to Eqs.~2!–~4!. Deriv-
ing the corresponding moment evolution equations with
exponential profile of the velocity and diffusion fields is si
nificantly more complicated and beyond the scope of t
paper. Instead, we use a random walk model in Sec. IV
model the system. Nonetheless, the theory above exp
the origin of the Taylor dispersion effects that we observe
order to avoid the effects of a mean displacement due to
locally varying shear rate, we remove the mean flow. T
resulting mean displacement squared is plotted versus
and averaged for different particles initially within the sam
radial bin~bin size5d or d/2). An initially linear evolution
indicates ordinary diffusive behavior with the slope of t
line equal to 2D.

Figure 4 shows a typical example of the mean displa
ment squared for the tangential^(RDu)2& and radial̂ (Dr )2&
directions for particles in the shear band. Here, theD nota-
tion reminds us that the mean flow is subtracted from
data. The dotted lines are linear fits fort,30 s giving diffu-
sivities proportional to the slopes. The tangential diffusiv
is approximately double the radial diffusivity at small time
The former is expected to deviate from a straight line due
the higher order terms similar to those in Eq.~4!. Note, how-
ever, that for smallt, the linear term in Eq.~4! dominates,
and Taylor dispersion effects are not present.

One might worry that using early times would be inacc
rate when diffusivity is generally defined as a long-time b
havior. In particular, results for more rapid flows show
initial ballistic regime@5,9,18#, and significant velocity auto
correlations appear in noncolloidal suspensions@20#. How-
ever, in the quasistatic motion of the present experim
there is no ballistic behavior because grains are constant
contact with each other. Moreover, as seen in the velo
autocorrelation shown in Fig. 5, the velocities quickly b
come uncorrelated. The time for the correlation to reach z
corresponds to a mean relative grain displacement of 0.d

FIG. 4. Mean displacement squared vs time for tangential
radial directions for particle trajectories starting at 2d,r ,3d and
shearing wheel frequency off 51 mHz. Dotted lines show linea
fits to t,30 s.
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and occurs within 4 s for this data. Therefore, diffusivitie
measured for 5 s,t,30 s can be expected to be beyond t
correlated regime and are at times before significant Ta
dispersion effects are observed. We show below, using a
dom walk simulation, that the apparent subdiffusivity of t
radial component in Fig. 4 is due to the radial gradient
shear rate, an effect that is not included in Eqs.~2!–~4!
above.

Figure 6 showŝ (RDu)2& and ^(Dr )2& for particles ini-
tially at various distances from the shearing surface. It
evident that the diffusivity is larger close to the sheari
surface, i.e., in regions of large shear, as observed previo
In addition, the maximum diffusivity occurs atr'2d. The
fact that the maximum diffusivity does not occur atr 50 is
due to nondiffusive motion of particles in contact with th
shearing wheel. Since most of these particles (r ,2d) are
dragged by the wheel at the same speed and the mean v
ity has been subtracted, the fluctuations are smaller. In Fig
we show the rms displacements versus time on a log
scale. The solid line shows the expected slope for diffus
behavior.

As seen in Fig. 8, the diffusivity is proportional to th
local shear rateġ. For this figure, we use the local shear ra
determined from the slope of Fig. 2, and a diffusivity that
half the slope ofDr 2 versust for t,30 s. The decrease in
diffusivity at large shearing rate~i.e., close to the shearing
surface! is due to particles being dragged by the shear
wheel and hence exhibiting ballistic behavior. For the rad
and tangential directions,D'0.120.2 d2ġ'0.420.8a2ġ,
wherea is the particle radius, i.e., the scale of the diffusivi
is approximately given bya2ġ. As a consequence of th
exponential tail of the velocity profile, the diffusivity als
decays roughly exponentially, such that the diffusive mot
is effectively confined to the shear band.

Figure 9~a! shows results for diffusivity versus local she
rate (r .2d) for three different rotation frequencies of th
shearing wheel. The diffusivity is approximately proportion
to local shear rate over a large range of shearing rates f
separate experimental runs, andDuu /Drr '2. In Fig. 9~b!,
the diffusivity at each data point was divided by the loc

d
FIG. 5. Velocity autocorrelation vs time for particles in 2d,r

,3d for radial and tangential velocity components.
8-5
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B. UTTER AND R. P. BEHRINGER PHYSICAL REVIEW E69, 031308 ~2004!
shear rate. The resulting data (D/ġ) are roughly constan
over 3 orders of magnitude of shear rate. The lines show
for tangential diffusivitiesDuu50.223ġ and radial diffusivi-
ties Drr 50.108ġ. The data forDuu are noisier than that fo
Drr since due to the mean flow the magnitude of the tang
tial motion is much larger than radial motion.

C. Off-diagonal diffusivity Dr u

The off-diagonal diffusion constantDru is shown in Fig.
10. This diffusion coefficient is an order of magnitud
smaller thanDrr andDuu . Away from the shearing surface
Dru is also negative. This is due to the anisotropic for
network and will be addressed below.

IV. RANDOM WALK SIMULATION

As mentioned earlier, direct comparison of the data
Eqs. ~2!–~4! is not possible. The fact thatv(r ) and D(r )
decay exponentially and the presence of the boundaryr
50 in the experiment are inconsistent with the assumpti
leading to the moment evolution equations in Sec. I B.
exact solution of the moment equations with the appropr
boundary conditions and spatial dependence ofD(r ) and

FIG. 6. Mean displacement squared vs time at different d
tances from shearing wheel. Radial displacements shown on top
tangential displacements on bottom.f 51 mHz.
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vW (r ) is difficult. However, a numerical simulation with ap
propriate spatial dependence inD andvW using a random walk
model is relatively simple.

In this section, we present such a simulation in which
assume diffusive motion and impose an exponential velo
profile and impenetrable inner boundary so as to parallel
experiment. To model radial diffusion, a walker makes a s
each timet with equal probability along6 r̂ with a radial
step lengthLr(r ) proportional to@ ġ(r )#1/2, where ġ is the
experimentally measured shear rate. That is,Lr(r )
5c1@ ġ(r )#1/2, wherec1 is a constant. This imposes a diffu
sivity D}L(r )2/t}ġ(r ) in agreement with Fig. 9. Radia
motion is bounded by the shearing wheel, so any step
would move a particle through that boundary is automa
cally forced to be a step away from the shearing wheel~i.e.,
towards positiver ). Tangential motion is modeled in a sim
lar way. At each time step, the walker is advected at
experimentally measured mean velocity based on its ra
position ~Fig. 2! and also randomly takes an additional st

-
nd

FIG. 7. Log-log plot of displacement squared vs time for data
Fig. 6. Radial displacements given in plot on top and tangen
displacements on bottom. The straight solid line gives the expe
behavior for diffusive motion.
8-6
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SELF-DIFFUSION IN DENSE GRANULAR SHEAR FLOWS PHYSICAL REVIEW E69, 031308 ~2004!
along6 û with tangential step lengthLu(r )5c2ġ(r )1/2. This
model contains two free parametersc1 and c2, correspond-
ing to the magnitude ofDrr and Duu . Equivalently, the fit
parameters can be thought of as determining an overall s
factor for the data and the ratio of radial to tangential dif
sivities. Here, we do not consider additional anisotropies
sociated with the force chain network.

Figure 11 shows a mean-square displacement versus
for the simulated data. The experimental data from Fig. 6
also included for reference as thin solid lines. The simulat
is performed assumingDu /Dr51.9 (c150.48, c250.66).
As noted, the two free parameters set the scale of the ra
and tangential displacements. We emphasize that the rel
magnitudes of the data at different distances from the sh
ing wheel and the apparent subdiffusive and superdiffus
behavior at longer times result from the experimentally m
sured velocity profile.

Although the initial slope of the lines in Fig. 11 is equal
2D(r ), the long-time behavior and deviation from a straig
line is due to the coupling to the mean flow. The horizon
and vertical scales of Figs. 6 and 11 are identical in orde
compare the long-time behavior. This confirms that the
parent subdiffusion and superdiffusion is due to the m
flow.

In particular, it is clear that the curvature of theDrr data
for particles close to the shearing surface, which appeare
be subdiffusive, arises from the gradient in local shear r
That is, the grains next to the wall diffuse away to a region
slower shearing rate and, once away from the wall, diffu
more slowly. If this gradient is removed from the simulatio
~i.e., ġ is assumed constant!, the lines become straight wit
approximately the same slope. The presence of a walr
50) also tends to decrease the diffusivity at smallr, but this
is a much less pronounced effect than that of the gradien
shear rate. Note in Fig. 11 that simulated grains close to

FIG. 8. DiffusivitiesD vs local shear rateġ( f 51 mHz). Diffu-
sivities are proportional to the local shear rate. Close to the shea
wheel, at larger shear rates, the diffusivity decreases because
ticles at r ,2 are typically dragged continuously by the sheari

wheel. The solid line showsD50.200ġ and the dashed line show

D50.108ġ.
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shearing wheel show an apparent superdiffusive beha
due to Taylor dispersion.

We note that in the experiment, grains atr ,2 are gener-
ally dragged by the shearing wheel which tends to decre

ng
ar-

FIG. 9. ~a! Diffusivities vs local shear rate for grains atr .2 for
three different rotation rates of the shearing wheel. In~b!, the dif-

fusivities are rescaled by the local shear rateġ and d2. The lines

show fits forDuu50.223ġ ~solid! andDrr 50.108ġ ~dashed! which
approximately hold for 3 orders of magnitude of shear rate.

FIG. 10. Off-diagonal diffusivityDru .
8-7
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B. UTTER AND R. P. BEHRINGER PHYSICAL REVIEW E69, 031308 ~2004!
the apparent radial diffusivity and add to the effects of Tay
dispersion~which accounts for the slight difference in th
magnitudes of Figs. 6 and 11!. However, Fig. 11 reveals tha
the dominant effects are the shear gradient and Taylor
persion. Thus, the main features of the apparent subdiffu
and superdiffusive behavior are observed even though
simulation does not include the effect of ballistic motion d
to dragging of particles by the shearing wheel.

We show the measured diffusivities for the experime
and the random walk simulation together in Fig. 12. There
very good agreement except forr ,2, where the simulation
overestimates the diffusivity.

V. EFFECTS DUE TO ANISOTROPIC FORCE NETWORK

In the previous discussion, we tacitly assumed that
natural coordinate system for diffusion measurements is
by the radial and tangential directions, corresponding to
anisotropy of the imposed shear. However, dense syste
unlike dilute rapid flows, have anisotropic force networ
due to imposed shear which are in general at a differ
orientation from the flow direction. This is seen by using t
photoelasticity of the grains to image the force chains, a
Fig. 13~a!. This figure shows a typical case where the for

FIG. 11. Mean displacement squared vs time for simulation
random walk in which the experimentally measured velocity pro
is imposed. Radial displacements shown on top and tangentia
bottom. The thin solid lines show the experimental data from Fig
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chains are preferentially oriented to oppose the motion of
shearing wheel, at an angle that is intermediate between tr̂

and û directions. We might expect the diffusivity to be a
fected by the anisotropic force network. To determine t
angle, images such as Fig. 13~a! can be transformed from
polar to Cartesian coordinates, such that the shearing w
is located aty50 @Fig. 13~b!#. In this figure, each vertica
line corresponds to a radial line in the original image. Sin
the curvature of the wheel is relatively small, the transform
tion is not dramatic and distortion of the image is small.
2D autocorrelation of image 13~b!, then provides a measur
of the mean force chain orientation@13~c!#. The mean angle
f of the force chains fluctuates strongly in time around
mean value of 20° –30° relative tor̂ .

To determine the angular dependence of the diffusive m
tion, we locally project displacements at each time step o
an axis rotated at an anglef from the radial direction, as
sketched in Fig. 14. That is, for each step, the displacem
is locally parametrized in terms of radial and tangential co

f

on
.

FIG. 12. Diffusivity vs radial distance from the shearing surfa
for experimental data and the random walker model. The devia
between simulation and experiment forr ,2 is due to particles
being dragged nondiffusively by the shearing wheel.

FIG. 13. ~a! Force chains imaged using photoelastic grains. T
shearing wheel is marked by the white line and is rotating to
left. ~b! Image ~a! is rescaled from polar to Cartesian coordinat
such that the shearing wheel is aty50. ~c! A 2D autocorrelation of
~b! which characterizes the orientation of the strong force netwo
8-8
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SELF-DIFFUSION IN DENSE GRANULAR SHEAR FLOWS PHYSICAL REVIEW E69, 031308 ~2004!
ponents~relative to the center of the shearing wheel! and
then are locally projected onto an axis rotated byf relative
to the r direction. We then use thef components of the
trajectories to measure a diffusivityDff along this direction.
On the right side of Fig. 14, we showDff versusf for
grains at different radial distancer. Again, the diffusivities
decrease with distance from the shearing wheel. In addit
the direction of minimum diffusivityfmin , marked by the
solid circles, changes with distance from the shearing wh

In Fig. 15, we show the angle of minimum diffusivit
fmin versus distance from the shearing wheel which we
termine by fitting a parabola toDff in the regionfmin
630°. Close to the shearing surface, at high shear rates
minimum diffusivity is in the radial direction, correspondin
to the minimum expected based on the imposed shear d
tion. At larger distancesr, the minimum shifts towards the
direction of the mean force chain orientation. In other wor
outside of the immediate vicinity of the shearing wheel, t
anisotropic force network affects particle motion and must
taken into account in order to properly describe the diffus
motion in dense granular systems.

We use the same procedure for deducing the angular
pendence of the diffusivity on a number of independent d

FIG. 14. We locally project displacements at each time onto
axis rotated at an arbitrary anglef degrees from the radial direc
tion. Dff is measured vsf and plotted with the minimum diffu-
sivity indicated by the filled circles.

FIG. 15. The anglef corresponding to the minimum diffusivity
fmin is measured from Fig. 14. The increase with radial dista
corresponds to the minimum diffusivity becoming more align
with the mean direction of force chains.
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sets, including the data used to create the velocity profile
Fig. 3 and on two additional data sets with different shear
rates. We show data in Fig. 16 only for velocities that a
properly resolved, as in Fig. 3. Although there is some s
nificant variability from one data set to the next, there is
clear trend in whichfmin shifts towards the direction o
force chain orientation asr increases. When we perform th
same analysis on the simulated data, in which there is
force network,fmin does not increase above 0° as indicat
by the open circles. The fact that these points are negativ
addressed in the following section.

VI. DIFFUSIVITY AND VELOCITY AUTOCORRELATION
FUNCTIONS

Diffusivities (Drr andDuu) can also be determined usin
velocity autocorrelations from the expression

Dxx5E
0

`

^vx~ t !vx~ t1t!&dt, ~7!

where the velocity at each time step is simply defined
vx(t)[@x(t)2x(t21)#/Dt. The integral must be taken ove
times long enough to extend beyond the initial correla
region. Thus, for this data,

Dxx5Dt (
dt50

N

^vx~ t !vx~ t1dt!&, ~8!

where we use a cumulative sum of the autocorrelation~Fig.
5!. After an initial transient of about 5 s, the curve fluctuat
around a constant value. The average of the data well a
the transient~85–185 s, for this data set! is taken as the
diffusivity. Figure 17 shows the diffusivities determine
from the velocity correlations. For the most part, they ag
quite well with diffusivities determined from the displace
ment squared versus time data which are indicated by l

n

e

FIG. 16. The angle of minimum diffusivityfmin vs r measured
according to Fig. 14 for multiple data sets. Again, the orientation
minimum diffusivity shifts towards a direction that corresponds
the mean force chain direction. The same analysis is performe
the random walk data (s and linear fit! which does not model the
anisotropic force network.
8-9
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B. UTTER AND R. P. BEHRINGER PHYSICAL REVIEW E69, 031308 ~2004!
showing fits to the data of Fig. 12. The exception is
tangential diffusivities of particles adjacent to the shear
wheel. This discrepancy is due to the fact that there is so
non-negligible correlation in the tangential velocity aftert
530 s for particles in contact with the shearing wheel.

The off-diagonal diffusivity must be determined usin
@34#

Di j 5
1

2 E
0

t

~^v i~ t8!v j~ t !&1^v i~ t !v j~ t8!&!dt8, ~9!

which for larget can be rewritten as@18#

Di j 5
1

2 E
2`

`

^v i~ t !v j~ t1t!&dt, ~10!

assuming the motion is statistically stationary over time. T
reduces to Eq.~7! for the diagonal terms,i 5 j . The off-
diagonal diffusivity,Dru is shown in Fig. 18 along with data
determined using the displacement squared versus time
~Fig. 10!. Since the magnitude ofDru is small, the fluctua-
tions lead to larger noise in these results.

Further from the wheel, where the minimum diffusivi
shifts to larger angles, the cross-correlation term is nega
This indicates that motion alongû is anticorrelated with mo-
tion along r̂ , which agrees with a decrease in diffusivi
along positivef, and a shift in minimum diffusion angle
towards positivef. To emphasize the effect of the anis
tropic force network, we contrast the experimental resu
with data from the simulation, where there is no force n
work effect andDru is always positive~Fig. 18!.

The fact thatDru is positive in the simulation is due to th
velocity gradient, an effect that was also observed in pre
ous measurements of the cross term~typically designated as
Dxy! @17,18,26#. Note that a positiveDru in the present data
corresponds to a negativeDxy in previous results. This dif-
ference in sign is due to the fact that the authors of R
@17,18,26# used the convention thatvx increases withy. By

FIG. 17. Diffusivities determined from velocity autocorrelatio
using Eq. ~7!. The shearing wheel frequency isf 51 mHz. The
lines show fits to the tangential~solid! and radial~dashed! diffusivi-
ties in Fig. 12 for comparison.
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contrast, we have chosen the natural experimental coordi
systemy[r such thaty50 at the boundary~shearing wheel!
and increases into the bulk, i.e.,vx decreases withy.

Returning to the present studies, the fact thatDru is posi-
tive for the simulation is the origin of the slightly negativ
fmin seen in Fig. 16. We emphasize that the positivefmin
and negativeDru in the experimental data have the oppos
sign from the simulation. This difference in sign is due to t
presence of the strong force network in the experiments
effect that is absent in the simulations.

VII. LÉ VY FLIGHTS AND VORTICES

We also observe examples of correlated motion and
jectories similar to Le´vy flights @35# which could contribute
to nondiffusive motion. In fact, the dense 2D packing lea
to caging and coordinated motion such that neighbor
grains tend to move together. This differs from more dilat
flows in which collisions are the source of fluctuating m
tion. The fact that the present system behaves diffusively
average indicates that long-range correlated motion is s
ciently rare and random over time that the mean behavio
not affected.

It is interesting to ask whether such novel behavior
Lévy flights occur in our system and whether they are i
portant. Lévy flights are random walks in which occasion
large steps, or flights, are observed, such that appa
Brownian motion on smaller scales is punctuated by la
displacements. They also have the property that the varia
of the step sizê L2& and therefore the diffusivity (}L2/t)
are infinite. This situation can be realized if the probability
the walker making a stepL is given by a power lawP(L)
}L2a, where 2,a,3. This is in contrast with Gaussian o
exponential distributions ofL in which case large steps ar
much more rare and the variance is finite.

In Fig. 19~a!, we show trajectories for particles in th
shear band. Each line shows the trajectory of a single par
over the same time period~1000 s!. Next to the shearing
surface ~bottom of image!, particles travel relatively fas

FIG. 18. Off-diagonal diffusivity determined by integrating th
velocity cross correlation. Data determined from the slope of d
placement squared vs time plots~Fig. 10! is shown for comparison.
Dru for the random walk simulation is also shown.
8-10



s
e

e
T
-
c
ov
ar
th

ll
s

ro-

hat
nt
e-
lar
the
ey
al
it-

os-
9,
the
-

in
in-

is
m-
of

un-
u-

he

ear

-
t-

iv-

e
x

ll
ge
in-

g

n is
es.

SELF-DIFFUSION IN DENSE GRANULAR SHEAR FLOWS PHYSICAL REVIEW E69, 031308 ~2004!
compared to particles outside of the shear band~top of im-
age!, which fluctuate around effectively stationary position
Figure 19~b! shows a few particular trajectories from th
dashed region of Fig. 19~a!. At the edge of this band (r'4
25d), we see trajectories that are reminiscent of Le´vy
flights, in which relatively large displacements occur b
tween periods of fluctuating motion on a smaller scale.
observe this better, in Fig. 19~c!, we plot tangential displace
ment versus time for seven trajectories at different distan
from the shearing wheel. The data have been smoothed
a 5 s running window. We note that these are not necess
typical trajectories, but have been chosen to elucidate

FIG. 19. ~a! Trajectories in the shear band are shown for a fix
time ~1000 s!. ~b! A few individual trajectories from the dashed bo
in ~a! are shown. Motion similar to Le´vy flights is occasionally
observed (r'425d), in the region indicated by the arrow. Sma
fluctuations of particle position are observed with occasional lar
scale advection.~c! Tangential displacements vs time for seven
dividual trajectories (r'2.5d,3d,3.5d,4d,4.5d,5.5d,6.5d) chosen
to highlight Lévy-like motion. Trajectories closer to the shearin
wheel are displaced upwards att50 for clarity.
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presence of Le´vy-like behavior. In this plot, regions of sma
fluctuations~nearly flat lines! are separated by faster jump
along the mean flow direction.

These data can be compared with an example from a
tating flow fluid experiment~@36# e.g., Fig. 7! from which
similar data were obtained. Although we observe somew
similar motion, the trajectories in Fig. 19 have a differe
origin. In the fluid case, particles exhibit flights between p
riods in which they are trapped by vortices. In the granu
system, grains become trapped as they move farther from
shearing surface and remain effectively trapped until th
move closer to the wheel. In addition, it is common for loc
rearrangements involving 10–20 grains to occur interm
tently. ~A similar effect may also account for the Le´vy dis-
tributions of trapping times for observations of grains dep
ited on sand piles@37#.! With the present data, e.g., Fig. 1
we do not have sufficient statistics to determine whether
trajectories exhibit Le´vy scaling because flightlike trajecto
ries are rare.

We also occasionally observe cooperative motion as
Fig. 20, which displays particle trajectories over a 25 s w
dow in which the gray scale level indicates time~light gray
5early time, dark5later time!. In the lower right, there is a
region of locally correlated motion. A transient vortex
present in the upper left. Although correlated motion is co
mon, since motion in a dense packing requires motion
neighboring grains, vortices are rare events. In addition,
like vortices in fluids, there are no inertial effects and gran
lar vortices appear to quickly dissipate without affecting t
long-time behavior of the grains.

VIII. CONCLUSIONS

To conclude, we find that granular motion in dense sh
flows is diffusive with a self-diffusivity proportional to the
local shear rate (D'ġa2, where a is the particle radius!.
However, the diffusion tensorD is anisotropic due to under
lying anisotropies in both the velocity field and force ne
work. The velocity anisotropy leads to a tangential diffus

d

r

FIG. 20. Granular vortices~upper left! are occasionally ob-
served in plots of particle trajectories over 25 s. Particle positio
indicated by a dot with darker gray scale levels used for later tim
8-11
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B. UTTER AND R. P. BEHRINGER PHYSICAL REVIEW E69, 031308 ~2004!
ity that is about double the radial diffusivity. The anisotrop
force network dominates the local diffusivity outside the im
mediate vicinity of the shearing surface, and leads to a m
mum diffusivity approximately along the mean force cha
direction. This latter feature has not been observed in m
rapid flows, to our knowledge, and is a property of den
granular systems.

Motion can appear subdiffusive due to the decreas
shear rate away from the shearing surface or superdiffu
due to Taylor dispersion effects. A simple random wa
model which reproduces the apparent anomalous diffus
indicates that the underlying motion is diffusive. Using t
experimentally measured velocity profile, assumingDu /Dr
'2, and choosing an overall multiplicative scale factor,
simulation closely matches the experiment, including
long-time behavior which is affected by the gradient in sh
rate and Taylor dispersion. The simulation also highlights
effects of the anisotropic force network. Differences in t
sign of Dru between simulation and experiment are asso
ev

ys
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ated with the anisotropic force network. The same is true
the orientation of the minimum diffusivityDff . Velocity
autocorrelation plots show that motion in dense granu
flows quickly becomes uncorrelated and there is not a dis
guishable ballistic regime before diffusive behavior dom
nates.

Examples of correlated motion, such as vortices, and
jectories similar to Le´vy flights are also observed. Howeve
these effects are sufficiently intermittent and random that
system behaves diffusively.
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